Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK(take(X1, X2)) → MARK(X2)
A__U11(tt, L) → MARK(L)
MARK(zeros) → A__ZEROS
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(U21(X)) → A__U21(mark(X))
A__AND(tt, X) → MARK(X)
MARK(length(X)) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNatIList(IL), and(isNat(M), isNat(N)))
A__TAKE(s(M), cons(N, IL)) → A__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3, X4)) → MARK(X1)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__U11(tt, L) → A__LENGTH(mark(L))
MARK(U31(X1, X2, X3, X4)) → A__U31(mark(X1), X2, X3, X4)
A__ISNATILIST(V) → A__ISNATLIST(V)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__TAKE(0, IL) → A__ISNATILIST(IL)
MARK(U21(X)) → MARK(X)
A__TAKE(0, IL) → A__U21(a__isNatIList(IL))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNat(N))
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__U31(tt, IL, M, N) → MARK(N)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(take(X1, X2)) → MARK(X2)
A__U11(tt, L) → MARK(L)
MARK(zeros) → A__ZEROS
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(U21(X)) → A__U21(mark(X))
A__AND(tt, X) → MARK(X)
MARK(length(X)) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNatIList(IL), and(isNat(M), isNat(N)))
A__TAKE(s(M), cons(N, IL)) → A__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3, X4)) → MARK(X1)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__U11(tt, L) → A__LENGTH(mark(L))
MARK(U31(X1, X2, X3, X4)) → A__U31(mark(X1), X2, X3, X4)
A__ISNATILIST(V) → A__ISNATLIST(V)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__TAKE(0, IL) → A__ISNATILIST(IL)
MARK(U21(X)) → MARK(X)
A__TAKE(0, IL) → A__U21(a__isNatIList(IL))
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNat(N))
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__U31(tt, IL, M, N) → MARK(N)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(take(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, L) → MARK(L)
MARK(s(X)) → MARK(X)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__AND(tt, X) → MARK(X)
MARK(length(X)) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNatIList(IL), and(isNat(M), isNat(N)))
A__TAKE(s(M), cons(N, IL)) → A__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3, X4)) → MARK(X1)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__U11(tt, L) → A__LENGTH(mark(L))
MARK(U31(X1, X2, X3, X4)) → A__U31(mark(X1), X2, X3, X4)
A__ISNATILIST(V) → A__ISNATLIST(V)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__TAKE(0, IL) → A__ISNATILIST(IL)
MARK(U21(X)) → MARK(X)
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNat(N))
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__U31(tt, IL, M, N) → MARK(N)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
MARK(isNat(X)) → A__ISNAT(X)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(take(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(take(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3, X4)) → MARK(X1)
MARK(U31(X1, X2, X3, X4)) → A__U31(mark(X1), X2, X3, X4)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(U21(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
A__U11(tt, L) → MARK(L)
MARK(s(X)) → MARK(X)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(cons(X1, X2)) → MARK(X1)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNatIList(IL), and(isNat(M), isNat(N)))
A__TAKE(s(M), cons(N, IL)) → A__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__U11(tt, L) → A__LENGTH(mark(L))
A__ISNATILIST(V) → A__ISNATLIST(V)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNat(N))
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__U31(tt, IL, M, N) → MARK(N)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
MARK(isNat(X)) → A__ISNAT(X)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( a__U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__isNatIList(x1) ) = | | + | | · | x1 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( a__length(x1) ) = | | + | | · | x1 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( a__isNatList(x1) ) = | | + | | · | x1 |
M( a__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( A__TAKE(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( A__LENGTH(x1) ) = | 0 | + | | · | x1 |
M( A__AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( A__U11(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( A__ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( A__ISNAT(x1) ) = | 0 | + | | · | x1 |
M( A__U31(x1, ..., x4) ) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( A__ISNATLIST(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
a__and(X1, X2) → and(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__isNatIList(X) → isNatIList(X)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__zeros → zeros
mark(nil) → nil
a__length(X) → length(X)
a__U11(X1, X2) → U11(X1, X2)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__U21(X) → U21(X)
a__isNat(0) → tt
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNatList(nil) → tt
a__isNatIList(zeros) → tt
mark(U21(X)) → a__U21(mark(X))
mark(length(X)) → a__length(mark(X))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__length(nil) → 0
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__isNatIList(V) → a__isNatList(V)
mark(isNat(X)) → a__isNat(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
a__and(tt, X) → mark(X)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNat(length(V1)) → a__isNatList(V1)
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, L) → MARK(L)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
MARK(s(X)) → MARK(X)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(cons(X1, X2)) → MARK(X1)
A__AND(tt, X) → MARK(X)
A__TAKE(s(M), cons(N, IL)) → A__AND(a__isNatIList(IL), and(isNat(M), isNat(N)))
MARK(and(X1, X2)) → MARK(X1)
A__TAKE(s(M), cons(N, IL)) → A__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
A__U11(tt, L) → A__LENGTH(mark(L))
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNATILIST(V) → A__ISNATLIST(V)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__LENGTH(cons(N, L)) → A__AND(a__isNatList(L), isNat(N))
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__U31(tt, IL, M, N) → MARK(N)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 8 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(cons(X1, X2)) → MARK(X1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__AND(tt, X) → MARK(X)
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATILIST(V) → A__ISNATLIST(V)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → MARK(X)
A__ISNATILIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(cons(X1, X2)) → MARK(X1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
A__ISNATILIST(V) → A__ISNATLIST(V)
The remaining pairs can at least be oriented weakly.
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__AND(tt, X) → MARK(X)
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__AND(x1, x2)) = 1 + x2
POL(A__ISNAT(x1)) = 1 + x1
POL(A__ISNATILIST(x1)) = 1 + x1
POL(A__ISNATLIST(x1)) = x1
POL(MARK(x1)) = 1 + x1
POL(U11(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 0
POL(a__U11(x1, x2)) = 0
POL(a__U21(x1)) = 0
POL(a__U31(x1, x2, x3, x4)) = 0
POL(a__and(x1, x2)) = 0
POL(a__isNat(x1)) = 0
POL(a__isNatIList(x1)) = 0
POL(a__isNatList(x1)) = 0
POL(a__length(x1)) = 0
POL(a__take(x1, x2)) = 0
POL(a__zeros) = 0
POL(and(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(isNat(x1)) = 1 + x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 1 + x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__ISNATLIST(take(V1, V2)) → A__AND(a__isNat(V1), isNatIList(V2))
MARK(isNatIList(X)) → A__ISNATILIST(X)
A__ISNATLIST(cons(V1, V2)) → A__AND(a__isNat(V1), isNatList(V2))
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__AND(tt, X) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 6 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, L) → A__LENGTH(mark(L))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A__U11(tt, L) → A__LENGTH(mark(L)) at position [0] we obtained the following new rules:
A__U11(tt, s(x0)) → A__LENGTH(s(mark(x0)))
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, U21(x0)) → A__LENGTH(a__U21(mark(x0)))
A__U11(tt, zeros) → A__LENGTH(a__zeros)
A__U11(tt, nil) → A__LENGTH(nil)
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__U11(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U11(tt, tt) → A__LENGTH(tt)
A__U11(tt, 0) → A__LENGTH(0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, s(x0)) → A__LENGTH(s(mark(x0)))
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, U21(x0)) → A__LENGTH(a__U21(mark(x0)))
A__U11(tt, zeros) → A__LENGTH(a__zeros)
A__U11(tt, nil) → A__LENGTH(nil)
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__U11(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, tt) → A__LENGTH(tt)
A__U11(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U11(tt, 0) → A__LENGTH(0)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(a__zeros)
A__U11(tt, U21(x0)) → A__LENGTH(a__U21(mark(x0)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A__U11(tt, zeros) → A__LENGTH(a__zeros) at position [0] we obtained the following new rules:
A__U11(tt, zeros) → A__LENGTH(zeros)
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, U21(x0)) → A__LENGTH(a__U21(mark(x0)))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__U11(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U11(tt, zeros) → A__LENGTH(zeros)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, U21(x0)) → A__LENGTH(a__U21(mark(x0)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__U11(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U11(tt, U21(x0)) → A__LENGTH(a__U21(mark(x0)))
A__U11(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
The remaining pairs can at least be oriented weakly.
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__LENGTH(x1)) = 1 + x1
POL(A__U11(x1, x2)) = 1 + x1
POL(U11(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 0
POL(a__U11(x1, x2)) = 0
POL(a__U21(x1)) = 0
POL(a__U31(x1, x2, x3, x4)) = x1
POL(a__and(x1, x2)) = x1
POL(a__isNat(x1)) = 1
POL(a__isNatIList(x1)) = 1
POL(a__isNatList(x1)) = 1
POL(a__length(x1)) = 0
POL(a__take(x1, x2)) = 1
POL(a__zeros) = 1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = 1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 0
POL(tt) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
a__and(X1, X2) → and(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__isNatIList(X) → isNatIList(X)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__zeros → zeros
mark(nil) → nil
a__length(X) → length(X)
a__U11(X1, X2) → U11(X1, X2)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__U21(X) → U21(X)
a__isNat(0) → tt
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNatList(nil) → tt
a__isNatIList(zeros) → tt
mark(U21(X)) → a__U21(mark(X))
mark(length(X)) → a__length(mark(X))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__length(nil) → 0
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__isNatIList(V) → a__isNatList(V)
mark(isNat(X)) → a__isNat(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
a__and(tt, X) → mark(X)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNat(length(V1)) → a__isNatList(V1)
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__U11(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
The remaining pairs can at least be oriented weakly.
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__LENGTH(x1)) = x1
POL(A__U11(x1, x2)) = x1 + x2
POL(U11(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 1 + x1 + x2
POL(a__U11(x1, x2)) = 0
POL(a__U21(x1)) = 1
POL(a__U31(x1, x2, x3, x4)) = 1 + x1 + x2
POL(a__and(x1, x2)) = 1 + x2
POL(a__isNat(x1)) = 1
POL(a__isNatIList(x1)) = 1
POL(a__isNatList(x1)) = 1
POL(a__length(x1)) = 0
POL(a__take(x1, x2)) = 1 + x2
POL(a__zeros) = 1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 1 + x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = 1 + x1
POL(nil) = 1
POL(s(x1)) = 0
POL(take(x1, x2)) = 1 + x2
POL(tt) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
a__and(X1, X2) → and(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__isNatIList(X) → isNatIList(X)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__zeros → zeros
mark(nil) → nil
a__length(X) → length(X)
a__U11(X1, X2) → U11(X1, X2)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__U21(X) → U21(X)
a__isNat(0) → tt
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNatList(nil) → tt
a__isNatIList(zeros) → tt
mark(U21(X)) → a__U21(mark(X))
mark(length(X)) → a__length(mark(X))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__length(nil) → 0
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__isNatIList(V) → a__isNatList(V)
mark(isNat(X)) → a__isNat(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
a__and(tt, X) → mark(X)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNat(length(V1)) → a__isNatList(V1)
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__U11(tt, U31(x0, x1, x2, x3)) → A__LENGTH(a__U31(mark(x0), x1, x2, x3))
The remaining pairs can at least be oriented weakly.
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__LENGTH(x1)) = x1
POL(A__U11(x1, x2)) = x1 + x2
POL(U11(x1, x2)) = 1
POL(U21(x1)) = 1
POL(U31(x1, x2, x3, x4)) = 1
POL(a__U11(x1, x2)) = 1
POL(a__U21(x1)) = 1
POL(a__U31(x1, x2, x3, x4)) = 1
POL(a__and(x1, x2)) = x1 + x2
POL(a__isNat(x1)) = 1
POL(a__isNatIList(x1)) = 1
POL(a__isNatList(x1)) = 1
POL(a__length(x1)) = 1
POL(a__take(x1, x2)) = 1
POL(a__zeros) = 1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(tt) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
a__and(X1, X2) → and(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__isNatIList(X) → isNatIList(X)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__zeros → zeros
mark(nil) → nil
a__length(X) → length(X)
a__U11(X1, X2) → U11(X1, X2)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__U21(X) → U21(X)
a__isNat(0) → tt
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNatList(nil) → tt
a__isNatIList(zeros) → tt
mark(U21(X)) → a__U21(mark(X))
mark(length(X)) → a__length(mark(X))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__length(nil) → 0
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__isNatIList(V) → a__isNatList(V)
mark(isNat(X)) → a__isNat(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
a__and(tt, X) → mark(X)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNat(length(V1)) → a__isNatList(V1)
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__U11(tt, isNat(x0)) → A__LENGTH(a__isNat(x0))
A__U11(tt, and(x0, x1)) → A__LENGTH(a__and(mark(x0), x1))
A__U11(tt, isNatList(x0)) → A__LENGTH(a__isNatList(x0))
The remaining pairs can at least be oriented weakly.
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__LENGTH(x1)) = x1
POL(A__U11(x1, x2)) = 1 + x2
POL(U11(x1, x2)) = x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 1 + x2
POL(a__U11(x1, x2)) = 1 + x2
POL(a__U21(x1)) = 0
POL(a__U31(x1, x2, x3, x4)) = 1 + x2
POL(a__and(x1, x2)) = 1 + x2
POL(a__isNat(x1)) = 1 + x1
POL(a__isNatIList(x1)) = 1 + x1
POL(a__isNatList(x1)) = 1 + x1
POL(a__length(x1)) = x1
POL(a__take(x1, x2)) = x2
POL(a__zeros) = 1
POL(and(x1, x2)) = 1 + x2
POL(cons(x1, x2)) = 1 + x2
POL(isNat(x1)) = 1 + x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = x1
POL(mark(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
a__and(X1, X2) → and(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__isNatIList(X) → isNatIList(X)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__zeros → zeros
mark(nil) → nil
a__length(X) → length(X)
a__U11(X1, X2) → U11(X1, X2)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__U21(X) → U21(X)
a__isNat(0) → tt
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNatList(nil) → tt
a__isNatIList(zeros) → tt
mark(U21(X)) → a__U21(mark(X))
mark(length(X)) → a__length(mark(X))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__length(nil) → 0
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__isNatIList(V) → a__isNatList(V)
mark(isNat(X)) → a__isNat(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
a__and(tt, X) → mark(X)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNat(length(V1)) → a__isNatList(V1)
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
A__U11(tt, isNatIList(x0)) → A__LENGTH(a__isNatIList(x0))
The remaining pairs can at least be oriented weakly.
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__LENGTH(x1)) = x1
POL(A__U11(x1, x2)) = 1
POL(U11(x1, x2)) = x1
POL(U21(x1)) = x1
POL(U31(x1, x2, x3, x4)) = 1
POL(a__U11(x1, x2)) = x1
POL(a__U21(x1)) = x1
POL(a__U31(x1, x2, x3, x4)) = 1
POL(a__and(x1, x2)) = x2
POL(a__isNat(x1)) = 0
POL(a__isNatIList(x1)) = 0
POL(a__isNatList(x1)) = 0
POL(a__length(x1)) = 0
POL(a__take(x1, x2)) = 1
POL(a__zeros) = 1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = 1
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
a__and(X1, X2) → and(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__isNatList(X) → isNatList(X)
a__isNat(X) → isNat(X)
a__isNatIList(X) → isNatIList(X)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__zeros → zeros
mark(nil) → nil
a__length(X) → length(X)
a__U11(X1, X2) → U11(X1, X2)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__U21(X) → U21(X)
a__isNat(0) → tt
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__isNatList(nil) → tt
a__isNatIList(zeros) → tt
mark(U21(X)) → a__U21(mark(X))
mark(length(X)) → a__length(mark(X))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__length(nil) → 0
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__isNatIList(V) → a__isNatList(V)
mark(isNat(X)) → a__isNat(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
a__and(tt, X) → mark(X)
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
a__isNat(length(V1)) → a__isNatList(V1)
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__U11(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U11(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__LENGTH(cons(N, L)) → A__U11(a__and(a__isNatList(L), isNat(N)), L)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt, L) → s(a__length(mark(L)))
a__U21(tt) → nil
a__U31(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__isNatList(V1)
a__isNat(s(V1)) → a__isNat(V1)
a__isNatIList(V) → a__isNatList(V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__and(a__isNat(V1), isNatList(V2))
a__isNatList(take(V1, V2)) → a__and(a__isNat(V1), isNatIList(V2))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(a__and(a__isNatList(L), isNat(N)), L)
a__take(0, IL) → a__U21(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U31(a__and(a__isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2, X3, X4)) → a__U31(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(isNatList(X)) → a__isNatList(X)
mark(isNatIList(X)) → a__isNatIList(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X1, X2) → U11(X1, X2)
a__length(X) → length(X)
a__U21(X) → U21(X)
a__U31(X1, X2, X3, X4) → U31(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
a__isNatList(X) → isNatList(X)
a__isNatIList(X) → isNatIList(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.